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Abstract. A modeloid, a certain set of partial bijections, emerges from
the idea to abstract from a structure to the set of its partial auto-
morphisms. It comes with an operation, called the derivative, which
is inspired by Ehrenfeucht-Fräıssé games. In this paper we develop a AQ1

generalization of a modeloid first to an inverse semigroup and then to
an inverse category using an axiomatic approach to category theory. AQ2

We then show that this formulation enables a purely algebraic view on
Ehrenfeucht-Fräıssé games.

1 Introduction

Modeloids have been introduced by Benda [1]. They can be seen as an abstraction
from a structure to a partial automorphism semigroup created in the attempt
to study properties of structures from a different, more general angle which is
independent of the language that is defining the structure. We do not follow
Benda’s original formulation in terms of an equivalence relation but treat mod-
eloids as a certain set of partial bijections. Our recent interest in them was
triggered by Scott’s suggestion to look at the modeloidal concept from a cat-
egorical perspective. The new approach aims at establishing a framework in
which the relationship between different structures of the same vocabulary can
be studied by means of their partial isomorphisms. The overall project is work
in progress, but as a first result we obtained a purely algebraic formulation of
Ehrenfeucht-Fräıssé games.

Throughout the project, computer-based theorem proving is employed in
order to demonstrate and explore the virtues of automated and interactive the-
orem proving in context. The software used is Isabelle/HOL [13] in the 2019
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2 L. Tiemens et al.

Edition. We are generally interested in conducting as many proofs of lemmas
and theorems as possible by using only the sledgehammer1 command, and to
study how far full proof automation scales in this area. Reporting on these prac-
tically motivated studies, however, will not be the focus of this paper. We only
briefly mention here how we encoded, in Isabelle/HOL, an inverse semigroup
and an inverse category, and we present a summary of our practical experience.

Inverse semigroups (see e.g. [10] for more information) play a major role
in this paper. They serve as a bridge between modeloids and category theory.
The justification for this is given by the fact that an inverse semigroup can
be faithfully embedded into a set of partial bijections by the Wagner-Preston
representation theorem. This opens up the possibility of generalizing modeloids,
which are sets of partial bijections, to the language of inverse semigroup theory.

Once there, we have a natural transition from an inverse semigroup to an
inverse category (for further reference see [12]). We introduce the theory of inverse
categories by an equational axiomatization that enables computer-supported rea-
soning. This serves as the basis for our formulation of a categorical modeloid.

In each stage of generalization the derivative, a central operation in the theory
of modeloids, can be adapted and reformulated. This operation is about extend-
ing the elements of a modeloid. Suppose that τ is a finite relational vocabulary
meaning that τ consists only of finitely many relation and/or constant symbols.
As it turns out, the derivative on a categorical modeloid on the category of finite
τ -structures is equivalent to playing an Ehrenfeucht-Fräıssé game.

This paper is organized in the following way. In Sect. 2 we define both mode-
loids and the derivative operation. We then turn to inverse semigroups in Sect. 3
and develop the axiomatization of a modeloid in inverse semigroup language.
Section 4 shows how to represent a category in Isabelle/HOL and defines the
categorical modeloid. After the derivative operation is established in this con-
text, we give an introduction to Ehrenfeucht-Fräıssé games in Sect. 5 and present
the close connection between the categorical derivative and Ehrenfeucht-Fräıssé
games. Proofs for the stated theorems, propositions and lemmas are presented in
the extended preprint [16] of this paper (cf. also [15]); the Isabelle/HOL source
files are available online.2

2 Modeloids

Let us first recall the definitions of a partial bijection and of partial composition.

Definition 1 (Partial bijection and partial composition). A partial bijec-
tion f : X → Y is a partial injective function. The inverse of f , also a partial
bijection and denoted by f−1, is given by the preimage of the elements in the
codomain of f : f−1(y) = f−1({y}), ∀y ∈ cod(f).
1 Sledgehammer [3] is linking interactive proof development in Isabelle/HOL with

anonymous calls to various integrated automated theorem proving systems. Among
others, the tool converts the higher-order problems given to it into first-order repre-
sentations for the integrated provers, it calls them and analyses their responses, and
it tries to identify minimal sets of dependencies for the theorems it proves this way.

2 See http://christoph-benzmueller.de/papers/RAMICSadditionalMaterial.zip.
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Categorical Axiomatization of Modeloids 3

The composition between two partial functions f : X → Y and g : Y → Z is
defined only on f−1(dom(g) ∩ cod(f)). Then the partial composition

(g ◦ f)(x) = g(f(x)), ∀x ∈ f−1(dom(g) ∩ cod(f))

is well-defined.

Furthermore, let Σ be a finite non-empty set. We then define

F (Σ) := {f : Σ → Σ | f is a partial bijection} (1)

as the set of all partial bijections on Σ.

Definition 2 (Modeloid[1]). Let M ⊆ F (Σ). M is called a modeloid on Σ
if, and only if, it satisfies the following axioms:

1. Closure of composition: f, g ∈ M ⇒ f ◦ g ∈ M
2. Closure of taking inverses: f ∈ M ⇒ f−1 ∈ M
3. Inclusion property: f ∈ M and A ⊂ dom(f) implies f |A ∈ M
4. Identity: idΣ ∈ M

As such, a modeloid is a set of partial bijections which is closed under com-
position and taking inverses, which has the identity on Σ as a member, and
which satisfies the inclusion property. The inclusion property can be seen as a
downward closure in regards of function restriction.

In order to further illustrate the definition, we present a motivating example
from model theory.

Example 1. Let S = (A,R1, ...) be a finite relational structure. The set M of all
partial isomorphisms on S forms a modeloid.

The name modeloid originates from the above example since S is also called a
model. For further motivation, background information and details on modeloids,
we refer to Benda’s paper [1]; a nice example in there is the construction of a
Scott Sentence presented through modeloidal glasses [1, p. 82]. We, on the other
hand, turn to the core concept of the derivative which is defined in the following
way. For convenience we represent a partial bijection as a set of tuples.

Definition 3 (Derivative). Let M be a modeloid on Σ. Then the derivative
D(M) ⊆ F (Σ) is defined by

{(x1, y1), ..,(xn, yn)} ∈ D(M) :⇔
∀a ∈ Σ ∃b ∈ Σ : {(x1, y1), .., (xn, yn), (a, b)} ∈ M ∧

∀a ∈ Σ ∃b ∈ Σ : {(x1, y1), .., (xn, yn), (b, a)} ∈ M

A derivative D(M) is thus a set which only contains partial bijections that
can be extended by an arbitrary element from Σ and which then still belong
to M . This extension can take place either in the domain or in the range of
the function. The next two results [1, Prop 2.3] provide some insight into why
modeloids and the derivative operation are in harmony.
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4 L. Tiemens et al.

Lemma 1. Let M be a modeloid on Σ and D(M) the derivative. Then we have
that D(M) ⊆ M .

Proposition 1. If M is a modeloid then so is D(M).

The importance of these results is essentially due to the fact that they enable
us to apply the derivative repeatedly.

3 Inverse Semigroups and Modeloids

In this section we show how the Wagner-Preston representation theorem justifies
our generalization of a modeloid to inverse semigroup language. We also discuss
how well proof automation performs in the context of inverse semigroups. Some
familiarity with the Isabelle/HOL proof assistant [3,13] is assumed.

3.1 Inverse Semigroups in Isabelle/HOL

We start with the equational definition of an inverse semigroup.

Definition 4 (Inverse semigroup [6]). Let S be a set equipped with the binary
operation ∗ : S × S → S and the unary operation a �→ a−1. (S,−1 , ∗) is called
an inverse semigroup if, and only if, it satisfies the axioms

1. (x ∗ y) ∗ z = x ∗ (y ∗ z) for all x, y, z ∈ S,
2. x ∗ x−1 ∗ x = x for all x ∈ S,
3. (x−1)−1 = x for all x ∈ S and
4. x ∗ x−1 ∗ y ∗ y−1 = y ∗ y−1 ∗ x ∗ x−1 for all x, y ∈ S

An inverse in semigroup theory is a generalization of the known group the-
oretical definition. This generalized definition does not depend on a specified
unique neutral element. Intuitively, it can be thought of as the inverse map of a
partial bijection.

Definition 5 (Inverse). Let (S, ∗) be a semigroup and x ∈ S. Then y ∈ S is
called an inverse of x if, and only if, x ∗ y ∗ x = x and y ∗ x ∗ y = y.

We encode an inverse semigroup as follows in Isabelle/HOL.

The domain for individuals is chosen to be ′a, which is a type variable. This
means we have encoded a polymorphic version of inverse semigroups.
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Categorical Axiomatization of Modeloids 5

Using this implementation almost all results needed for proving the Wagner-
Preston representation theorem, which we will discuss shortly, can be found by
automated theorem proving. Occasionally, however, some additional lemmas to
the ones usually presented in a textbook (e.g. [10]) are needed. By automated
theorem proving we here mean the use of sledgehammer [3] for finding the proofs
of the given statements without any further interaction. Regarding equivalent
definitions of an inverse semigroup, we were able to automate the proofs of the
following theorem (except for 2. ⇒ 1., which is due to a Skolemization issue).

Theorem 1 ([10]). Let (S, ∗) be a semigroup. Then the following are
equivalent:

1. There is −1 : S → S such that (S,−1 , ∗) is an inverse semigroup.
2. Every element of S has a unique inverse.
3. Every element of S is regular, meaning ∀x ∈ S ∃y ∈ S : x ∗ y ∗ x = x, and

idempotents in S commute.

Our experiments confirm that automated theorem proving (and also model
finding) can well support the exploration of an axiomatic theory as presented.
However, the intellectual effort needed to model and formulate the presented
mathematics in the first place is of course still crucial, and a great deal of work
has gone into this intuitive aspect of the development process. A more tech-
nical challenge also is to find suitable intermediate steps that can be proven
automatically by sledgehammer.

3.2 Modeloid as Inverse Semigroup

We now show that every modeloid M ⊆ F (Σ) under partial composition is an
inverse semigroup. We make use of Theorem 1 by using the third characteriza-
tion. For this task regard (M, ◦) as a semigroup. This is clear since composition
of partial functions is associative. Since the partial identities of M are exactly
the idempotent elements in (M, ◦), commutativity is ensured by referring to the
next proposition. Furthermore, also by using the next proposition, the closure
of taking inverses required by a modeloid implies regularity for all elements in
M . Hence, (M,−1 , ◦) is an inverse semigroup.

Proposition 2 ([10]). Let f : X → Y be a partial bijection.

1. For a partial bijection g : Y → X, the equations f = fgf and g = gfg hold
if, and only if, g = f−1

2. 1A1B = 1A∩B = 1B1A for all partial identities 1A and 1B where A,B ⊆ X

Not only is every modeloid an inverse semigroup, but by the Wagner-Preston
representation theorem also every inverse semigroup can be faithfully embedded
into F (Σ), which is itself a modeloid. This motivates the idea of formulating the
axioms for a modeloid in inverse semigroup language. Our aim is to restate the
derivative operation in this context. In order to achieve this, we shall translate
the axioms from Definition 2, examining them one by one.

A
ut

ho
r 

Pr
oo

f



6 L. Tiemens et al.

1. Closure of Composition: Because of the embedding, the composition of partial
functions will simply be the ∗-operation in an inverse semigroup.

2. Closure of taking inverses: By Theorem 1 an inverse semigroup is such that the
inverse exists for every element and is unique, hence resembling the inverses
of partial functions and in particular the closure property.

3. The inclusion property: Here it is not immediately apparent how this can be
expressed within an inverse semigroup. We shall see that the natural partial
order is capable of doing that.

4. The identity on Σ: The identity is a certain idempotent element in an inverse
semigroup. It will lead us to the notion of an inverse monoid.

It is Axiom 3 that we focus our attention on next. We define the natural
partial order and present the Wagner-Preston representation theorem, which
establishes a connection to function restriction in F (Σ). We introduce notation
for such a restriction. For two partial functions f, g we write g ⊆ f to say that
dom(g) ⊆ dom(f) and ∀x ∈ dom(g) : g(x) = f(x).

Definition 6 (Natural partial order). Let Σ = (Σ,−1 , ∗) be an inverse semi-
group and s, t ∈ Σ. Then we define for some idempotent e ∈ Σ

s≤ t :⇔ s = t ∗ e.

Theorem 2 (Wagner-Preston representation theorem[10]). Let Σ =
(Σ,−1 , ∗) be an inverse semigroup. Then there is an injective homomorphism
Ω : Σ → F (Σ), such that for a, b ∈ Σ we have a≤ b ⇐⇒ Ω(a) ⊆ Ω(b).

From this theorem it is clear what we mean by a faithful embedding of an
inverse semigroup into the set of partial bijections F (Σ). Faithfulness corre-
sponds to the fact that the natural partial order in light of the representation
theorem is equivalent to the partial order which function restriction defines. This
nicely opens up the possibility to capture the essence of the inclusion property
from Definition 2 by the natural partial order. Let M ⊂ S, where S is an inverse
semigroup. Then the inclusion property can be stated as

∀f ∈ M ∀g ∈ S : g ≤ f =⇒ g ∈ M. (2)

By setting S = F (Σ), the dependency of M on F (Σ) can be seen explicitly.
In the abstract formulation of a modeloid we will keep this subset property. It
is immediate that a modeloid, seen as an inverse semigroup, fulfills (2) by the
following proposition.

Proposition 3. Let M be a modeloid on Σ. Then, for f, g ∈ M , we have

g ≤ f ⇐⇒ g ⊆ f

In a modeloid M the inclusion property implies that the empty partial bijec-
tion, which we denote by 0, is also included in M . As a result we want to
establish a similar behavior in the generalized modeloid. The deeper reason for
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Categorical Axiomatization of Modeloids 7

this is found in the definition of the derivative operation, because it requires the
notion of an atom, which can only be defined if a zero element is present. Seeing
M as an inverse semigroup, 0 is an idempotent element for which the following
property holds: ∀x ∈ M : 0 ∗ x = 0. Hence, we will call the idempotent with this
property the zero element. When defining a modeloid in semigroup language we
require the zero element to be part of it.

Turning to Axiom 4, which is idΣ ∈ M , we examine which element of an
inverse semigroup S is most suitable for this task. To evaluate, we again look
at the modeloid M as an inverse semigroup. In this semigroup, idΣ will be an
idempotent e satisfying ∀x ∈ M : e∗x = x. Such an element is known as a neutral
element in the context of group theory. We require for the inverse semigroup,
which we eventually call a modeloid, that e is part of it. What we get is known
as an inverse monoid in the literature.

Remark 1. Given an inverse monoid, denoted by S1, and the element e with
e∗x = x, ∀x ∈ S1. Consider the representation theorem again: this theorem is not
guaranteeing uniqueness of the embedding, and in fact there can be several ones.
Hence, we cannot assume that e will be mapped to the identity idΣ . However, for
all idempotent f ∈ S1 we have that f ≤ e because f = e ∗ f by the assumption
about e. Hence, e is always the upper bound of all idempotents in S1.

We have prepared everything needed for defining a modeloid again. We shall
call it a semimodeloid. Note, as mentioned before, that a modeloid is a subset of
F (Σ) for some non-empty set Σ and, as discussed, we keep this subset property
to state the inclusion axiom.

Definition 7 (Semimodeloid). Let S1 = (Σ, −1, ∗, e, 0) be an inverse monoid.
Then M ⊆ Σ is called a semimodeloid if, and only if,

1. ∀x, y ∈ M : (x ∗ y) ∈ M
2. ∀x ∈ M : x−1 ∈ M
3. ∀x ∈ M ∀y ∈ S1 : y ≤ x ⇒ y ∈ M
4. e ∈ M

Remark 2. A semimodeloid is again an inverse monoid with the zero element.

Proposition 4. Every semimodeloid can be faithfully embedded into a modeloid.
Furthermore, by the considerations above, every modeloid is a semimodeloid.

Now we develop the derivative operation in the setting of a semimodeloid.
Consider again Definition 3 in which we have introduced the derivative operation.
It is evident that the elements of Σ are of crucial importance. Furthermore, we
are required to be able to extend the domain of a function by one element at
a time. This poses a challenge because in an inverse monoid this information is
not directly accessible. But as we shall see, it is possible to obtain.

First we characterize the elements of Σ. Therefore, consider F (Σ) and realize
that all the singleton-identities id{a}, for a ∈ Σ, are in natural bijection to the
elements of Σ. The special property of such a singleton-identity is

∀f ∈ F (Σ) : f ⊆ id{a} ⇒ (f = id{a} ∨ f = 0) (3)
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8 L. Tiemens et al.

since dom(id{a}) = {a}. Seeing F (Σ) as an inverse monoid with zero element
leads to the following definition.

Definition 8 (Atom). Let S1 be an inverse monoid with zero element 0. Then
a non-zero element x ∈ S1 is an atom if, and only if,

∀f ∈ S1 : f ≤ x ⇒ (f = x ∨ f = 0)

Our plan is to use the notion of an atom to define the derivative. The next lemma
justifies this usage.

Lemma 2. The idempotent atoms in F (Σ) are exactly the singleton-identities.

This suffices to define the derivative for semimodeloids. We then ensure that
the definition matches Definition 3 if the semimodeloid is on F (Σ).

Definition 9 (Derivative—semimodeloid). Let M be a semimodeloid on
the inverse monoid S1 with zero element 0. We define the derivative D(M) of
M as

D(M) := {f ∈ M | ∀ idempotent atoms a ∈ S1 ∃x ∈ M : (f ≤ x ∧ a ≤ x−1x)∧
∀ idempotent atoms b ∈ S1 ∃y ∈ M : (f ≤ y ∧ b ≤ yy−1)}

If we think about x in the above definition as a partial bijection, then x−1x is
the identity on the domain of x and, hence, the condition a ≤ x−1x expresses
that a is in the domain of x. Similarly b ≤ yy−1 states that b is in the range of y.

Proposition 5. The derivative on a modeloid M produces the same result as
the semimodeloidal derivative on M .

4 Categorical Axiomatization of a Modeloid

We use an axiomatic approach to category theory based on free logic [8,9,14]. As
demonstrated by Benzmüller and Scott [2], this approach enables the encoding of
category theory in Isabelle/HOL. Their encoding work is extended below to cover
also inverse categories. Subsequently we formalize modeloids and derivatives in
this setting.

4.1 Category Theory in Isabelle/HOL

When looking at the definition of a category C, one can realize that the objects
A,B,C, .. are in natural bijection with the identity morphisms 1A,1B ,1C , ...
because those are unique. This enables a characterization of a category just by
its morphisms and their compositions, which is used to establish a formal axiom-
atization. However, in this axiomatic approach we are faced with the challenge of
partiality, because the composition between two morphisms f, g ∈ C is defined
if, and only if,

dom(g) = cod(f). (4)
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Categorical Axiomatization of Modeloids 9

As a result composition is a partial operation.
An elegant way to deal with this issue is by changing the underlying logic to

free logic. In free logic an explicit notion of existence is introduced for the objects
in the domain that we quantify over. In our case the domain consists of the mor-
phisms of a category. The idea now is to define the composition total, that is, any
two morphisms can always be composed, but only those compositions “exist”
that satisfy (4). Because we can distinguish between existing and non-existing
morphisms, we are able to formulate statements that take only existing mor-
phisms into account. In this paper we want to work with a unique non-existing
morphism which will be denoted by �. Hence a composition of morphisms, that
does not satisfy (4), will result in �. We refer to Benzmüller and Scott [2] for
more information on the encoding of free logic in Isabelle/HOL.

Based upon this groundwork, a category in Isabelle/HOL is defined as follows.

For convenience, we will assume a category to be small for the rest of this
paper. As a result, a category for us has only a set of morphisms which satisfies
the above axiom schema. This allows us to use notation from set theory. We
write (m : X → Y ) ∈ C to mean that m is a morphism from the category C. In
addition, it says that dom(m) ∼= X and cod(m) ∼= Y , so X is the domain of m
and Y the codomain. The identity morphisms X and Y , which are representing
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10 L. Tiemens et al.

objects in the usual sense, are characterized by the property that X ∼= dom(X) ∼=
cod(X), respectively for Y . Hence every c ∈ C satisfying c ∼= dom(c) or c ∼=
cod(c) is representing an object, and we refer to such a morphism as an object.

We want a categorical generalization of an inverse semigroup, so let’s turn to
the question of how to introduce generalized inverses to a category. In the above
setting we found that by adding the axioms of an inverse semigroup, which are
responsible for shaping these inverses (Definition 4, Axioms 2–4), we arrive at a
notion that is equivalent to the usual definition of an inverse category. Note that
this definition is adopted to our free logic foundation by using Kleene equality,
which is denoted by ∼=. We emphasize again that this equality between terms
states that, if either term exists, so does the other one and they are equal.

Definition 10 (Inverse category [7]). A small category C is called an inverse
category if for any morphism s : X → Y ∈ C there exists a unique morphisms
ŝ : Y → X such that s ∼= s · ŝ · s and ŝ ∼= ŝ · s · ŝ.

For the representation in Isabelle/HOL we skolemized the definition.

Next, we see the quantifier free definition.

The equivalence between the two formulations has been shown by interactive
theorem proving. Again, a significant number of the required subproofs could
be automated by sledgehammer. In addition, the minimality of the axioms for
the quantifier free version above was checked effectively using sledgehammer
and nitpick3. Inverse categories are interesting to us because of the following
proposition.

Proposition 6. Let C be an inverse category with exactly one object. Then C
is an inverse semigroup.

This allows us to generalize a semimodeloid to an inverse category by for-
mulating the new axioms in such a way that this categorical construction will
collapse to a semimodeloid under the condition of having just one object.
3 nitpick [4] is a counterexample generator for higher-order logic integrated with

Isabelle/HOL.
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Categorical Axiomatization of Modeloids 11

4.2 Categorical Axiomatization of a Modeloid

The notion of the natural partial order is also definable in an inverse category.
To state it, we first introduce a definition for idempotence.

Definition 11 (Idempotence). Let C be a small category. Then a morphism
e ∈ C is called idempotent if, and only if,

e · e ∼= e.

Whenever we do not assume that both sides of the equation exist, we use
Kleene equality.

Definition 12 (Natural partial order [12]). Let C be an inverse category
and let s, t : X → Y be morphisms in C. We define

s ≤ t :⇔ ∃ idempotent e ∈ EndC(X) : s ∼= t · e

where EndC(X) := {m ∈ C |m : X → X} is called an endoset.
When defining a categorical modeloid M on an inverse category C, we will

see that for each object X in C, EndC(X) is a semimodeloid. We require the
category to have a zero element in each of its endosets in order to define an
atom. For this we simply write that C has all zero elements.

Definition 13 (Categorical modeloid). Let C be an inverse category with
all zero elements. Then a categorical modeloid M on C is such that M ⊆ C
satisfies the following axioms:

1. a, b ∈ M ⇒ a · b ∈ M
2. a ∈ M ⇒ a−1 ∈ M
3. ∀ a ∈ C∀b ∈ M : a ≤ b ⇒ a ∈ M
4. ∀ objects X ∈ C : X ∈ M

It is evident that this definition is close by its appearance to a semimodeloid.
However, we are now dealing with a network of semimodeloids and have thus
reached a much more expressive definition.

Proposition 7. Let C be an inverse category with all zero elements and let
M be a categorical modeloid on C. Then for each object X in M we get that
EndM (X) is a semimodeloid (on itself).

Remark 3. Every semimodeloid can easily be seen as a categorical modeloid
by the fact that an inverse monoid with zero element is an one-object inverse
category.

We have formulated a generalization of a modeloid in category theory. What
is left now is to define the derivative in this context. We will need the notion of
a homset and of an atom, which we already introduced for semigroups.
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12 L. Tiemens et al.

Definition 14 (Homset). Let C be a small category. Then the homset between
two elements X,Y ∈ C, satisfying X ∼= dom(X) and Y ∼= dom(Y ), is defined as

HomC(X,Y ) := {m ∈ C |m : X → Y }
Hence an endoset is a special case of a homset. We only assume zero elements to
be present in endosets and as a result an atom needs to be part of an endoset.

Definition 15 (Atom). Let C be an inverse category with all zero elements.
Then an element a ∈ EndC(X), for some object X ∈ C, is an atom if, and only
if, the existence of a implies that a is not the zero element and

∀e ∈ EndC(X) : e ≤ a implies that e ∼= a ∨ e ∼= 0EndC(X).

This concludes the preliminaries for defining the derivative on a homset.

Definition 16 (Derivative—homset). Let C be an inverse category with all
zero elements and let M be a categorical modeloid on C. We define the derivative
on HomM (X,Y ) for X,Y ∈ M as D(HomM (X,Y )) := {f ∈ HomM (X,Y ) |
∀ idempotent atoms a ∈ EndM (X)∃h ∈ HomM (X,Y ) : (f ≤ h ∧ a ≤ h−1h)∧
∀ idempotent atoms b ∈ EndM (Y )∃g ∈ HomM (X,Y ) : (f ≤ g ∧ b ≤ gg−1)}
Remark 4. Let C be an inverse category with just one object X and a zero
element. Then C is an inverse semigroup by Proposition 6 and the derivative on
the homset D(HomC(X,X)) is equal to the semimodeloidal derivative D(C).

Now the key property of this operation is that it produces a categorical
modeloid again if we apply it to all homsets simultaneously.

Theorem 3. Let C be an inverse category with all zero elements and let M be
a categorical modeloid on C. Then

⋃

X,Y ∈M

D(HomM (X,Y ))

is a categorical modeloid on C.

As a result we define this to be the derivative operation on categorical mod-
eloids.

Definition 17 (Derivative—categorical modeloid). Let C be an inverse
category with all zero elements and let M be a categorical modeloid on C. Then
we set the derivative as

D(M) :=
⋃

X,Y ∈M

D(HomM (X,Y )).

Let M be a categorical modeloid. We define

D0(M) := M and Dn+1(M) := D(Dn(M)) (5)

for n ∈ N. Dm(M) thus takes the derivative m-times. This notion is used in the
next section.
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5 Algebraic Ehrenfeucht-Fräıssé Games

When moving from classical model theory to the finite case, some machinery
for proving inexpressibility results in first-order logic, such as the compactness
theorem, fails. However, Ehrenfeucht-Fräıssé (EF) games are still applicable and,
therefore, play a central notion in finite model theory due to the possibility to
show that a property is first-order axiomatizable. For more information see [11].

In this section we explicitly show that derivatives on categorical modeloids
generalize EF games.

5.1 Rules of EF Game

To play an EF game, two finite τ -structures A and B, where τ is a finite rela-
tional vocabulary, are needed. In general EF games are not restricted to finite
structures, but for our purpose we shall only deal with this case. In order to give
an intuitive understanding we imagine two players, which we call the spoiler
and the duplicator, playing the game. The rules are quite simple. In n ∈ N

rounds the spoiler tries to show that the two given structures are not equal,
while the duplicator tries to disprove the spoiler every time. A round consists of
the following:

– The spoiler picks either A or B and then makes a move by choosing an element
from that structure, so a ∈ A or b ∈ B.

– After the spoiler is done, the duplicator picks an element of the other structure
and the round ends.

Next we define what the winning condition for each round will be. For con-
venience let Part(A,B) be the set of all partial isomorphisms from A to B.
Furthermore, given a constant symbole c from τ , we denote by cA the interpre-
tation of c in the structure A.

Definition 18 (Winning position [11]). Suppose the EF game was played for
n rounds. Then there are moves (a1, .., an) picked from A and moves (b1, .., bn)
picked from B. For this to be a winning position we require that for some r ∈ N

the map
{(a1, b1), .., (an, bn), (cA

1 , cB
1 ), .., (cA

r , cB
r )} ∈ Part(A,B)

where the ci are all constant symbols of τ .

In order to win, the duplicator needs to defeat the spoiler in every possible
course of the game. We say the duplicator has an n-round winning strategy in
the Ehrenfeucht-Fräıssé game on A and B [11], if the duplicator is in a winning
position after n moves regardless of what the spoiler does. This is made precise
by the back-and-forth method due to Fräıssé.

Definition 19 (Back-and-forth relation [5]). We define a binary relation
≡m, m ∈ N, on all τ -structures by A ≡m B iff there is a sequence (Ij) for
0 ≤ j ≤ m such that
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14 L. Tiemens et al.

– Every Ij is a non-empty set of partial isomorphisms from A to B
– (Forth property) ∀j < m we have ∀a ∈ A∀f ∈ Ij+1 ∃g ∈ Ij : f ⊆ g ∧ a ∈

dom(g)
– (Back property) ∀j < m we have ∀b ∈ B ∀f ∈ Ij+1 ∃g ∈ Ij : f ⊆ g ∧ b ∈ cod(g)

Hence A ≡n B means that the duplicator has a n-round winning strategy.

5.2 The Derivative and Fräıssé’s Method

We relate the categorical derivative to Fräıssé’s method which we have just seen.
In order to do this, we define a categorical modeloid on the category of finite
τ -structures, where τ is a finite relational vocabulary. For that let A and B be
two finite τ -structures. Denote by F (A,B) the set

⋃

(X,Y )∈{A,B}2

Part(X,Y )

and let � �∈ F (A,B) be an arbitrary element. Then define C := F (A,B) ∪ {�}.
We construct two functions dom : C → C and cod : C → C such that

for a partial isomorphism f : X → Y ∈ F (A,B) we set dom(f) = idX and
cod(f) = idY , and for the element � we define dom(�) = � and cod(�) = �.

Next we define a binary operation · : C → C by

f · g =
{

f ◦ g, if dom(f) = cod(g) and f, g �= �
�, else

where ◦ denotes the composition of partial functions.

Proposition 8. D := (C, dom, cod, ·, �,−1 ) is an inverse category where f−1

denotes the inverse of each partial isomorphism f and �−1 = �. The existing
elements are exactly all elements in F (A,B) and the compositions f ◦ g in case
dom(f) = cod(g), for f, g ∈ F (A,B).

What we have just seen provides a general procedure for creating cate-
gories in our setting, which is founded on a free logic that is itself encoded
in Isabelle/HOL.

Corollary 1. D := (C, dom, cod, ·, �,−1 ) is also a categorical modeloid on itself.

Remark 5. Hence we have that every inverse category having a zero element for
each of its endosets is also a categorical modeloid and thus admits a derivative.

At this point we are able to use the derivative on D. The final theorem draws
the concluding connection between modeloids and Fräıssé’s method. We show
that in the established setting, an m-round winning strategy between A and B
is given by the sets which the derivative produces if applied m times. Note the
abuse of notation in the way we are using ≡m here.
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Categorical Axiomatization of Modeloids 15

Theorem 4. Let M be the categorical modeloid D. Then

∃h : X → Y ∈ Dm(M) with h �= � ⇐⇒ X ≡m Y, m ∈ N

As a result the derivative on this modeloid is equivalent to playing an EF
game between the two structures. Hence on an arbitrary categorical modeloid
the derivative can be seen as a generalization of EF games.

6 Conclusion

In this paper we have shown how to arrive at the notion of a categorical modeloid
using axiomatic category theory. We started out with a set of partial bijections
abstracting from a structure, then we interpreted this set as an inverse semi-
group by the embedding due to the Wagner-Preston representation theorem,
and, finally, we were able to axiomatize a modeloid in an inverse category. The
key feature we employed is the natural partial order which also enabled us to
present the derivative operation in each step of abstraction. The categorical
derivative on the category of finite structures of a finite vocabulary can then be
used to play Ehrenfeucht-Fräıssé games between two structures. As a result a
more abstract representation of these games is possible.

Using our encoding of inverse categories in Isabelle/HOL, we are currently
extending this encoding work to cover also categorical modeloids and their
derivatives. This naturally extends the framework established by Benzmüller and
Scott so far [2]. Furthermore, an investigation of the generalized Ehrenfeucht-
Fräıssé games in terms of applicability has to be conducted. We believe that the
notion of a categorical modeloid will continue to play a role when connecting
model theoretical and categorical concepts.

Acknowledgment. We wish to thank the anonymous referees for their helpful com-
ments and suggestions.
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